アドバンストセラミックスの耐熱衝撃性
Thermal shock resistance refers to a material’s ability to withstand rapid changes in temperature without cracking or failing. Advanced ceramics, while known for their hardness and strength, can be vulnerable to sudden temperature shifts due to their inherent brittleness and low thermal expansion tolerance. This makes thermal shock resistance a key metric when selecting ceramics for high-temperature and high-stress environments.

Why Thermal Shock Resistance Matters for Ceramics
Ceramics often operate in environments where temperature changes are extreme and unpredictable:
Without proper thermal shock resistance, even high-strength ceramics can fail suddenly, leading to equipment damage, safety risks, and increased maintenance costs.
Influencing factors
Conclusion: Materials with lower thermal expansion and higher thermal conductivity usually exhibit better thermal shock resistance.
Design principles
Thermal shock resistance Data of Key Advanced Ceramics
Choosing the right advanced ceramic for thermal shock conditions requires balancing mechanical strength, thermal expansion, and thermal conductivity. While no single material excels at everything, tailored selection allows for optimal performance under thermal cycling stress.
At Great Ceramic, we provide material recommendations and precision machining for various thermal applications, from aerospace to semiconductor industries.
素材 | 熱伝導率(W/m·K) | 熱膨張 (10⁻⁶/K) | Typical ΔT Tolerance(℃) | 特徴 |
---|---|---|---|---|
窒化ケイ素 (Si₃N₄) | 20-30 | 2.8–3.3 | 500~700 | High fracture toughness + medium to high thermal conductivity, the preferred material for thermal shock |
炭化ケイ素(SiC) | 120 | 4.0–4.5 | 350~500 | High thermal conductivity + high strength, widely used in metallurgical and chemical thermal environments |
窒化アルミニウム(AlN) | 175 | 4.5–5.3 | 300~500 | High thermal conductivity ceramics, widely used in thermal management systems |
酸化ベリリウム (BeO) | 230 | 7.5–9.0 | ~250 | Ultra-high thermal conductivity, but toxic, limited use |
ジルコニア強化アルミナ | ~15 | 7.5–8.0 | ~325 | Toughened alumina, suitable for mild thermal shock environment |
窒化ホウ素(BN) | 60–80 (hex) | 1.0–2.0 | ~200 | Very low expansion coefficient but low strength, suitable for thermal insulation interface |
機械加工可能なガラス・セラミック | 1.5–3.5 | 3.0–3.5 | ~200 | Good machinability, but low thermal conductivity and strength |
ジルコニア (ZrO₂) | 2.5–3 | 10.0–11.5 | ~300 | High toughness but low thermal conductivity, prone to cracking due to sudden temperature changes |
Alumina (Al₂O₃, 99.5%) | 25-35 | 7.5–8.5 | 200~300 | Commonly used ceramics, but not suitable for frequent thermal shock environments |
*データは参考値です。
正しいセラミック選びでお困りですか?
Selecting the right high thermal shock resistant ceramic material is critical to ensuring long-term reliability and optimal performance. Whether you require silicon nitride, aluminum nitride or silicon carbide ceramic materials, our materials offer industry-leading performance, durability and precision.
当社の技術チームがお手伝いいたします。お客様の具体的なニーズに基づいた専門的でカスタマイズされたアドバイスをご希望の方は、今すぐ当社までご連絡ください。
比較セラミックと金属およびプラスチックの比較
The following bar chart ranks common materials by their approximate thermal shock resistance values, using the R-parameter as an indicator (higher = better). These values are derived from material databases and industry benchmarks.
■ Red: アドバンスト・セラミックス ■ Yellow: 金属 ■ Green: プラスチック
*データは参考値です。