İleri Seramiklerde Termal Şok Direnci
Thermal shock resistance refers to a material’s ability to withstand rapid changes in temperature without cracking or failing. Advanced ceramics, while known for their hardness and strength, can be vulnerable to sudden temperature shifts due to their inherent brittleness and low thermal expansion tolerance. This makes thermal shock resistance a key metric when selecting ceramics for high-temperature and high-stress environments.
Şuraya atla
Veri | Karşılaştırma | Uygulamalar | SSS | İlgili

Why Thermal Shock Resistance Matters for Ceramics
Ceramics often operate in environments where temperature changes are extreme and unpredictable:
Without proper thermal shock resistance, even high-strength ceramics can fail suddenly, leading to equipment damage, safety risks, and increased maintenance costs.
Influencing factors
Conclusion: Materials with lower thermal expansion and higher thermal conductivity usually exhibit better thermal shock resistance.
Design principles
Thermal shock resistance Data of Key Advanced Ceramics
Choosing the right advanced ceramic for thermal shock conditions requires balancing mechanical strength, thermal expansion, and thermal conductivity. While no single material excels at everything, tailored selection allows for optimal performance under thermal cycling stress.
At Great Ceramic, we provide material recommendations and precision machining for various thermal applications, from aerospace to semiconductor industries.
Malzeme | Termal iletkenlik(W/m·K) | Termal Genleşme (10⁻⁶/K) | Typical ΔT Tolerance(℃) | Özellikler |
---|---|---|---|---|
Silisyum Nitrür (Si₃N₄) | 20-30 | 2.8–3.3 | 500~700 | High fracture toughness + medium to high thermal conductivity, the preferred material for thermal shock |
Silisyum Karbür (SiC) | 120 | 4.0–4.5 | 350~500 | High thermal conductivity + high strength, widely used in metallurgical and chemical thermal environments |
Alüminyum Nitrür (AlN) | 175 | 4.5–5.3 | 300~500 | High thermal conductivity ceramics, widely used in thermal management systems |
Berilyum Oksit (BeO) | 230 | 7.5–9.0 | ~250 | Ultra-high thermal conductivity, but toxic, limited use |
Zirkonya Sertleştirilmiş Alümina | ~15 | 7.5–8.0 | ~325 | Toughened alumina, suitable for mild thermal shock environment |
Bor Nitrür (BN) | 60–80 (hex) | 1.0–2.0 | ~200 | Very low expansion coefficient but low strength, suitable for thermal insulation interface |
İşlenebilir Cam Seramik | 1.5–3.5 | 3.0–3.5 | ~200 | Good machinability, but low thermal conductivity and strength |
Zirkonya (ZrO₂) | 2.5–3 | 10.0–11.5 | ~300 | High toughness but low thermal conductivity, prone to cracking due to sudden temperature changes |
Alumina (Al₂O₃, 99.5%) | 25-35 | 7.5–8.5 | 200~300 | Commonly used ceramics, but not suitable for frequent thermal shock environments |
*Veriler sadece referans içindir.
Doğru Seramiği Seçmek İçin Yardıma mı İhtiyacınız Var?
Selecting the right high thermal shock resistant ceramic material is critical to ensuring long-term reliability and optimal performance. Whether you require silicon nitride, aluminum nitride or silicon carbide ceramic materials, our materials offer industry-leading performance, durability and precision.
Teknik ekibimiz size yardımcı olmak için burada - özel ihtiyaçlarınıza göre uzman, özelleştirilmiş tavsiyeler için bugün bize ulaşın.
Karşılaştırma: Seramikler ile Metaller ve Plastikler
The following bar chart ranks common materials by their approximate thermal shock resistance values, using the R-parameter as an indicator (higher = better). These values are derived from material databases and industry benchmarks.
■ Red: İleri Seramik ■ Yellow: Metals ■ Green: Plastics
*Veriler sadece referans içindir.